Review

Basics of Fertility Management for Apples and Peaches

Elizabeth Wahle
Fruit & Vegetable Specialist
Edwardsville Extension Center
Optimum nutrient levels

- Developing a nutrient management program
- Differs for perennial crops
 - Consider nutrient demand-supply relationship throughout the season
Nitrogen

- When trees require larger amounts
 - Early season canopy development
- Only a minimum supply
 - Fruit quality development
 - Adequate cold hardiness
- Nitrogen sources
 - Reserve N in the tree from the previous season
 - Readily available for initial growth in the spring
 - Main support for spur leaf development and early fruit development
Nitrogen sources

- **N supply from soil mineralization**
 - when the chemical compounds in organic matter decompose or are oxidized into plant-accessible forms
 - Provides substantial amounts of N to trees grown on soils with high organic matter

- **Nitrogen fertilizers applied to the soil or foliage**
 - Use soil and leaf analysis to help diagnose tree nutrient status and soil nutrient availability
 - Make adjustments on fertilization program
Soil analysis

• Useful to determine
 • Lime requirements
 • Mineral availability in the soil prior to orchard establishment
 • For established orchards...
 • Combine to interpret leaf analysis results
 • Modify fertilization programs
 • Sample separately the topsoil and the subsoil
Preplant soil preparation

- **Liming**
 - Maintain in the range of 6.0 to 6.5 throughout the soil profile
 * pH of topsoil (0-8 inch depth) adjust to 7.0
 * Adjust subsoil (8-16 inch depth) to 6.5
 - Also ensures adequate soil calcium and magnesium
 * Use high-Mag lime if soil magnesium levels are below the desired levels
 * 450-950 lbs Mg/acre topsoil (coarse → fine textured)
 * 250-550 subsoil
 - Harrow thoroughly into the soil surface before plowing down as deeply as possible
 * For large amounts, plow down 2/3 followed by thoroughly harrowing the remainder into the topsoil.
Other preplant nutrients

- **Potassium**
 - 330-520 lbs K₂O/acre topsoil (coarse → fine textured)
 - 200-300 subsoil
 - \([(\text{desired level topsoil} - \text{actual level}) + (\text{desired level subsoil} - \text{actual level subsoil})]\) = lb./acre K₂O per 16” depth

- **Nitrogen**
 - 40 lb./acre for cover crop establishment
 - Another 40 lb./acre when cover crop is plowed down and permanent sod is seeded

- **Boron**
 - If Boron levels are in the low to medium range, apply preplant 2 to 3 lb./acre
 - Low (<0.4 to <0.8 lbs/a), Medium (0.4 to 1.6 lbs/a)
Fertilizing Young Trees

- Immediate supply of water to settle soil around roots
 - Nitrogen fertilizer not recommended at this time
 - Initial growth comes from tree reserves
 - Soil nutrient uptake is delayed due to the damaged root system
 - Applying dry fertilizer at this time may damage roots
 - First nitrogen application at budbreak
 - Soil applied
 - 0.6 to 1.0 ounce of actual N per tree
 - Same rate applied again 4 weeks after budbreak
 - If fertigation is an option
 - 100 ppm N in all water applied through drip for 8 weeks
Fertilizing Young Trees cont...

- **First nitrogen application at budbreak cont...**
 - Foliar sprays to improve early season tree growth
 - 2 to 3 sprays at 10-14-day intervals beginning 3 weeks after bud break
 - 6 lbs urea per 100 gal water
 - 2 additional sprays prior to leaf fall
 - 25 lbs per 100 gal water
- **In the second year when new shoots begin rapid growth**
 - Apply 0.1 to 0.2 lbs of actual N per tree and a similar foliar N spray program as in year 1
 - If fertigating, continue with 100 ppm N
Fertilizing Established Orchards

- Leaf sampling
 - Indicated concentrations of nutrients in the foliage
 - Leaf samples should be collected between 60 and 70 days after petal fall (usually late July to early August)
 - Collect mid-shoot leaves from current season terminal shoots on the periphery of the tree
 - Each sample should consist of about 100 leaves from several trees in the sampling area
 - Don’t mix leaves from different cultivars, soil conditions, tree vigor or crop load
 - Limitation of leaf sampling
 - Fairly late in the season to make corrections
Maintenance program

- **Suggested when leaf analysis shows no nutrient deficiency**

<table>
<thead>
<tr>
<th>Timing</th>
<th>Foliar Sprays</th>
<th>Ground Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green tip</td>
<td>1 spray of 2-4 lbs of a fixed copper product per 100 gal</td>
<td></td>
</tr>
<tr>
<td>Tight cluster to pink</td>
<td>1 spray of tank mixed 3 lbs urea and 1 lb Solubor/100 gal</td>
<td>Apply 20-40 lbs actual N/acre to soil</td>
</tr>
</tbody>
</table>
| Petal fall to early cover sprays | 1 spray of Zn-EDTA at label rate at second cover
Plus 1 spray of 3-4 lb of calcium chloride/100 gal at third cover
Plus 2 sprays of 10-15 lb of Epsom salt/100 gal at petal fall, and second cover | Apply 40-60 lbs of K₂O/acre to soil at petal fall |
| End of shoot growth to harvest | 3 to 4 sprays of 3 to 4 lbs of calcium chloride/100 gal at 14-day intervals for bitter pit susceptible varieties | |
| After harvest | | Apply 40-60 lbs of K₂O/acre to soil
Plus Every 2 to 3 years, apply appropriate amount of lime determined from soil analysis |
Corrective program

- **Suggested when leaf analysis shows nutrient deficiency**

<table>
<thead>
<tr>
<th>Timing</th>
<th>Foliar Sprays</th>
<th>Ground Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green tip</td>
<td>1 spray of 2-4 lbs of a fixed copper product per 100 gal</td>
<td></td>
</tr>
<tr>
<td>Prebloom period</td>
<td>2 sprays of tank mixed 3 lbs urea, 1 lb Solubor and Zn-EDTA at labeled rate per 100 gal; One at ½” green and the other at tight cluster to pink</td>
<td>Apply 40-60 lbs actual N/acre to soil</td>
</tr>
<tr>
<td>Petal fall to early cover sprays</td>
<td>2 sprays of 5 lbs urea/100 gal at petal fall and first cover Plus 2 sprays of Zn-EDTA at label rate at petal fall and second cover Plus 2 sprays of 1 lb solubor/100 gal at first and third cover Plus 3 sprays of 10-15 lb of Epsom salt/100 gal at petal fall, first and second cover Plus 1 spray of 3-4 lbs calcium chloride per 100 gal at third cover</td>
<td>Apply 60-150 lbs of K₂O/acre to soil at petal fall</td>
</tr>
<tr>
<td>End of shoot growth to harvest</td>
<td>5 to 6 sprays of 3-4 lbs of calcium chloride/100 gal at 14-day intervals</td>
<td>Apply 60-150 lbs of K₂O/acre to soil at the end of shoot growth</td>
</tr>
<tr>
<td>After harvest</td>
<td>2 sprays of 25 lbs of urea/100 gal at 7 to 10-day interval Plus 1 spray of 1 lb of actual copper/acre as copper sulfate</td>
<td>Soil application of 60-150 lbs of potassium/acre as sulfate of potash-magnesia Plus Soil application of dolomitic lime to increase calcium and magnesium supply based on soil and leaf analysis</td>
</tr>
</tbody>
</table>
Compatibility

- Generally, urea, Solubor and Zn-EDTA are compatible
 - Urea and Epsom salts has sometimes injured young apple foliage
- Epsom salts and some of the boron products may increase pH of the tank mix
 - Adjust pH before adding pH-sensitive pesticide
- Do not tank mix boron product with pesticides contained in water-soluble plastic packages
 - Inhibits dissolution of the plastic
- In general, foliar nutrients should not be mixed with oil
 - Particularly Solubor
- Epsom salts, Solubor and ZN-EDTA are compatible for use in postbloom sprays
 - Not usually sprayed together though; more common to spray two together
Foliar application cont...

- Compatibility cont...
 - Calcium chloride may be physically incompatible with Epsom salts
 - Resulting in plugged nozzles
 - Calcium chloride cannot be tank-mixed with Zn-EDTA
 - Can result in Zn phytotoxicity
 - Always test a new Zn-chelate product on a few trees first to see if any phytotoxicity occurs
Questions?

Elizabeth Wahle

wahle@illinois.edu

619-692-9434 x-21 (until June 30, then my office moves)